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We study a coordinated scheduling problem of production and transportation in which
each job is transported to a single batching machine for further processing. There are m
vehicles that transport jobs from the holding area to the batching machine. Each vehicle
can transport only one job at a time. The batching machine can process a batch of jobs
simultaneously where there is an upper limit on the batch size. Each batch to be processed
occurs a processing cost. The problem is to find a joint schedule of production and trans-
portation such that the sum of the total completion time and the total processing cost is
optimized. For a special case of the problem where the job assignment to the vehicles is
predetermined, we provide a polynomial time algorithm. For the general problem, we
prove that it is NP-hard (in the ordinary sense) and present a pseudo-polynomial time algo-
rithm. A fully polynomial time approximation scheme for the general problem is obtained
by converting an especially designed pseudo-polynomial dynamic programming
algorithm.

Crown Copyright � 2009-Published by Elsevier Inc. All rights reserved.
1. Introduction

The coordination of production scheduling and transportation has recently received a lot of attention in logistics and
manufacturing management research. Semi-finished jobs are transported from a holding area to a manufacturing facility
for further processing by transporters in many manufacturing systems. Another motivation arises in many industries where
the coordination of production and transportation can help to save energy and reduce fuel consumption. This is particularly
true in the iron and steel industry. In the ingot production system, the ingots stripped are transported by some vehicles to a
soaking pit. The soaking pit which is used to heat ingots can accommodate several ingots for processing at a time. Each batch
of ingots to be heated in the soaking pit needs energy consumption. Due to the requirement of temperature and high energy
consumption, the efficient coordination scheduling of production and transportation in the ingots system can improve work-
ing-in-processing inventories and reduce the total energy consumption.

In this paper, motivated by applications in the iron and steel industry, we study a coordinated scheduling problem of pro-
duction and transportation. The jobs located at a holding area need to be transported by some vehicles to a batching machine
for further processing. Each vehicle can transported one job at a time, and the batching machine can process several jobs at a
time. Each batch of jobs to be processed on the batching machine occurs a processing cost. The problem is to find a joint
schedule of production and transportation such that the objective is to minimize the sum of total completion time and total
processing cost.

This problem integrates production scheduling for job processing on the batching machine and transportation scheduling
for before processing. We briefly review batching machine scheduling problems and coordination scheduling problems of
production and transportation, respectively.
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The batching machine scheduling is an important research topic. Recent reviews of batch scheduling research are pro-
vided by Potts and Kovalyov [1] and Brucker et al. [2]. The scheduling problems on the batching machine can be divided into
two categories according to batch processing time pattern. In the first category, the processing time of a batch is dependent
on the jobs grouped together in the batch. For the problem of minimizing the total completion time, the complexity of the
problem is still open, but Chandru et al. [3] provide an optimal branch and bound algorithm and some efficient heuristics on
single batching machine, Hochbaum and Landy [4] present a two-approximation algorithm, which is later improved by Cai
et al. [5] to a polynomial time approximation scheme. For scheduling an unbounded batch machine to minimize the total
weighted completion time with job release dates, Deng et al. [6] pinpoint the difficulty by first proving the problem with
unbounded batch size to be NP-complete, and give a polynomial time approximation. Liu and Cheng [7] present a polynomial
time approximation scheme for the total completion time with job release dates, and also present a fully polynomial time
approximation scheme for scheduling an unbounded batch machine to minimize the total weighted completion time with
job release dates. In the second category, the processing time of each batch is assumed to be fixed regardless of the jobs
grouped together in the batch. Ahmadi et al. [8] have introduced two-machine flowshop problems with a discrete machine
and a batching machine. Sung et al. [9], and Sung and Kim [10] have extended the two-machine flowshop scheduling prob-
lems of Ahmadi et al. These problems deal with the production part on the single batching machine with fixed batch pro-
cessing time, and do not consider the coordination between transportation and production.

Another scheduling problems related to ours are found in joint production and transportation problems. Lee and Chen
[11] review two types of transportation situations. The first type involves transporting a semi-finished job from one machine
to another for further processing. The second type involves transporting a finished job to the customer or warehouse. They
also study two types of transportation with the constraints on transportation capacity and transportation times. They study
the class of scheduling problems by analyzing computationally complexity and proposing polynomial or pseudo-polynomial
algorithms. For type-1 transportation, Lee and Strusevich [12] study the two-machine flowshop problem with a single inter-
stage transporter of unlimited capacity. Chang and Lee [13] have extended type-2 transportation of Lee and Chen’s work to
the situation when each job occupies a different amount of space in the vehicle. Li and Ou [14] consider a single machine
scheduling problem that takes into account the pickup arrangement of the materials and the delivery arrangement of fin-
ished jobs. In above production–transportation models, the machine configuration involves a single machine, parallel ma-
chines, flow shop or open shop.

There are also papers that address production and distribution scheduling from a combined distribution cost and batch
delivery point of view. This environment is closely related to batching because all the completed jobs are delivered in a batch
to the customer. Pundoor and Chen [15] study a production–distribution scheduling problem with one supplier and one or
more customers in which the objective is to minimize the maximum delivery tardiness and the total distribution cost. Chen
and Vairaktarakis [16] consider single machine and parallel machine scheduling problems with distribution scheduling and
routing for delivery of completed jobs to the customers. Hall and Potts [17] analyze the complexity of some single machine
scheduling problems with batch deliveries, but without a transporter availability constraint. Hall and Potts [18] consider var-
ious single and parallel machines scheduling problems where the various costs are based on the delivery times and delivery
cost. Wang and Cheng [19] also consider a parallel machine scheduling problem with batch delivery costs.

Although production–transportation problems have been extensively studied in the literature, litter work has been done
on the integration of transportation before processing and production on the single batching machine. Our work differs from
the above models that we study not only the transportation schedule of semi-finished jobs, but also the production schedule
of a batching machine. Motivated by problems in general manufacturing management, we do not assume zero returning
time. Thus, we note that a vehicle in transportation stage may not be viewed as a real ‘‘machine”. This is because it is occu-
pied but not carrying any job as the vehicle is returning from the batching machine to the holding area. Hence, these vehicles
are different from what real parallel machines are supposed to be in traditional scheduling problems. When the returning
time is ignored in the transportation stage, the vehicle environment is equivalent with parallel machine environment. To
the best of our knowledge, there exist the recent references neither on coordination of transportation and batching sched-
uling or on scheduling parallel machines followed by a batching machine.

In this paper, for a special case with given job assignment on the vehicle, we give a polynomial time algorithm. For the
general problem, we pinpoint the difficulty by first proving the problem to be NP-hard. We also provide a pseudo-polynomial
time algorithm to solve this problem, and further show that this problem is ordinarily NP-hard. Finally, via the scaling tech-
nique and the proposed dynamic programming, we provide a fully polynomial approximation scheme for the general
problem.

The organization of this paper is as follows. In the next section, we describe the problem and provide optimality proper-
ties. In Section 3, we provide a polynomial time algorithm to solve a special case. In Section 4, we prove the NP-hardness of
the general problem. Then we present a pseudo-polynomial time algorithm for the general problem in Section 5. In Section 6,
we present a fully polynomial time approximation scheme (FPTAS). The last section contains a conclusion and some sugges-
tions for future research.

2. Statement of problem

In the following we describe the problem under consideration. Our problem consists of a transportation stage from the
holding area to the batching machine and a production stage on the batching machine.
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(1) A set of jobs located at a holding area are transported to a batching machine for further processing.
(2) In the transportation stage, there are a number of vehicles available where each vehicle can deliver only one job at a

time. All vehicles are initially located at the holding area.
(3) The transportation time of a job is job-dependent.
(4) In the production stage, the batching machine can process several jobs simultaneously as a batch. The maximum num-

ber of jobs that can be processed simultaneously in the batching machine is called capacity of that batching machine.
(5) The time needed to process a batch of jobs on the batching machine is denoted by a constant regardless of the jobs

grouped together in the batch.
(6) Once processing of a batch is initiated, it cannot be interrupted and other jobs cannot be introduced into the machine

until processing is completed.
(7) Each batch to be processed on the batching machine occurs a processing cost.
(8) All jobs are available in the holding area at time 0.

Next, we introduce the notation to be used in this paper.

n number of jobs
m number of vehicles
tj transportation time of job j from the holding area to the batching machine, j ¼ 1;2; . . . ;n
t empty moving time of each vehicle from the batching machine back to the holding area
p processing time of a batch on the batching machine
c capacity of the batching machine
b number of batches to be processed on the batching machine
Bl set of jobs in batch l, l ¼ 1; . . . ; b
bl number of jobs processed in batch l, l ¼ 1; . . . ; b
aðbÞ processing cost function
Cj completion time of job j on the batching machine, j ¼ 1;2; . . . ;n
F ¼

P
Cj þ aðbÞ objective function

In situation where the dimension on the two measurements
P

Cj and aðbÞ is difficult to unify, we may adjust cost func-
tion aðbÞ to uniform dimension with total completion time. For ease of presentation, denote our problem as TBS (transpor-
tation and batching scheduling problem).

Next, we present some optimality properties for problem TBS.

Lemma 1. There exists an optimal schedule for TBS such that there is no idle time between the jobs transported on each vehicle in
the transportation part.

Proof. If there exists idle time, we can always move the subsequent jobs earlier without increasing the objective value. h

The following result describes a candidate set of possible starting time points on the batching machine.

Lemma 2. There exists an optimal schedule for TBS in which the starting time of each batch on the batching machine is made
either at the arrival time of some job on the machine or immediately at a time when the machine becomes available.

Proof. Assume that there is the starting time of some batch which is scheduled neither at the arrival time of some job on the
machine nor at a time when the machine becomes available. This starting time can be changed to the latest earlier time
which fits either of those conditions. Since the same jobs can be processed at that earlier time, and there are no additional
operations, the objective value is not increased. h

Lemma 3. There exists an optimal schedule p� ¼ fB1;B2; . . . ;Bbg for TBS in which: (1) all jobs assigned to the same vehicle are
scheduled in the non-decreasing order of transportation times. (2) Bl contains all jobs which arrive at the machine in the time inter-
val ðSl�1; Sl� if the number of the jobs is no more than c; for l ¼ 2; . . . ; b:

Proof. (1) Assume that jobs Ji and Jj are assigned to the same vehicle and Jj follows Ji immediately such that ti P tj in p�. Let
p0 be a schedule obtained by swapping Ji and Jj. We consider two different cases that arise through the possible batch choices
of Ji and Jj. Case (i): Ji and Jj are processed in the same batch. It is easy to see that Fðp�Þ ¼ Fðp0Þ. Case (ii): Ji and Jj are not in the
same batch. Without loss of generality, assume that Ji 2 Bl and Jj 2 Blþ1 in p�. The starting time of batch Bl in p0 is less than or
equal to the starting time in p� due to Lemma 2 and ti P tj. This implies that

P
Cðp0Þ 6

P
Cðp�Þ. Thus, we obtain

Fðp0Þ 6 Fðp�Þ, regardless of whether Ji and Jj are processed in the same batch or not.
(2) Index all jobs in the increasing order of their arrival times on the batching machine in p�. Assume that the batches are

numbered in accordance with their start times such that S1 < S2 < � � � < Sb, and the number of the jobs in each batch is not
greater than the machine capacity. Let Jj be the first job in Blþ1, and Jj arrives at the machine at time rj, such that rj 6 Sl. Let p0
be a schedule obtained by simply assigning Jj to Bl, then C0j ¼ Sl þ p < Slþ1 þ p ¼ Cj. The remaining jobs in p0 are not changed.
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It is obvious that Fðp0Þ 6 Fðp�Þ, which is a contradiction. We can show that there exists an optimal schedule in which Bl

consists of a number of jobs which finish transportation contiguously in the time interval ðSl�1; Sl�. h
3. A polynomial time algorithm for a special case

In this section, we consider a special case where the job assignment to the vehicles is predetermined. It is evident that the
problem reduces to an optimal batching problem in this case. This special case characterizes the practical situation where
each vehicle is dedicated to a special group of jobs. Now we can provide a dynamic programming algorithm to solve the opti-
mal batching problem as follows.

Schedule the jobs on each vehicle in non-decreasing transportation time order based on the Lemma 3, and then re-index
all jobs in accordance with the job arrival time on the batching machine, i.e., r1 6 r2 6 � � � 6 rn. It suffices to consider one job
sequence and apply it to the processing of jobs on the machine. So the starting time of each batch on the machine need to be
decided, and this can be done by dynamic programming. When the machine finishes one batch, it will either process a new
batch immediately or wait until the last job of new batch arrives. In the first case, the starting time of a new batch is xþ p
where the starting time of current last batch on the machine is x. In the second case, the starting time is rj, for some job j. We
can see that in the first case, x can be traced back and the starting time can be expressed as rj þ qp for some q 6 n� j and
some job j. Hence, the possible starting times of the machine can be rj; rj þ p; . . . ; rj þ qp, for some q 6 n� j, and
j ¼ 1;2; . . . ;n. Let sl denote the actual time of batch Bl corresponding to starting time point h, for
h ¼ rj; rj þ p; . . . ; rj þ qp; l ¼ 1;2; . . . ; b, where dn=ce 6 b 6 n and s0 ¼ 0.

Define f ðk; j; slÞ as the minimal total completion time to schedule the first k jobs 1;2; . . . ; k, provided that the current last
batch contains jobs j; jþ 1; . . . ; k and starts to be processed at time sl where k� jþ 1 6 c and sl P rk. If we know the available
time of the batching machine before we process jobs j; jþ 1; . . . ; k, then the increase of total completion time due to jobs
j; jþ 1; . . . ; k is actually fixed. Namely, f ðk; j; slÞ that satisfies the following three properties:

(i) 0 < k� jþ 1 6 c;
(ii) sl ¼ rj; rj þ p; . . . ; rj þ qp; and sl � sl�1 P p; for l ¼ 2;3; . . . ; b;

(iii) dk=ce 6 l 6 k;

otherwise, f ðk; j; slÞ ¼ 1.
At first, we denote initial condition: f ð0;0;0Þ ¼ 0. Then, the induction formulas can be expressed as follows:
f ðk; j; slÞ ¼minff ðj� 1; i; sl�1Þ þ ðk� jþ 1Þðsl þ pÞjall possible states ði; sl�1Þg;

where j� 1; i; sl�1 satisfy the conditions (i), (ii) and (iii) described above.

Thus, the optimal solution is obtained after the induction process, and it is in form of

FðnÞ ¼minff ðn; j; sbÞ þ aðbÞjall possible states ðj; sbÞg:
By recording all the necessary information in the above process, an optimal schedule can be calculated. From the above
description and analysis, it is also not difficult to see that the time complexity of the algorithm is Oðcn3Þ time.

We now demonstrate the above solution method with a numerical example.

Example. Consider the instance with J ¼ fJ1; J2; J3; J4g, m ¼ 2, t ¼ 1, c ¼ 3, p ¼ 5, t1 ¼ 1, t2 ¼ 4, t3 ¼ 2, t4 ¼ 4, and aðbÞ ¼ 6b.
We assume that J1 and J2 are transported by one vehicle, J3 and J4 are transported by another vehicle. From the above
method, we know r1 ¼ 1, r2 ¼ 2, r3 ¼ 6, and r4 ¼ 7. We have the following results:
f ð1;1; s1Þ ¼ f ð0; 0;0Þ þ r1 þ p ¼ 6;

f ð2;1; s1Þ ¼ f ð0; 0;0Þ þ 2ðr2 þ pÞ ¼ 14;

f ð2;2; s2Þ ¼ f ð1;1; s1Þ þ ðs2 þ pÞ ¼ 17;

f ð3;1; s1Þ ¼ f ð0; 0;0Þ þ 3ðr3 þ pÞ ¼ 33;

f ð3;2; s2Þ ¼ f ð1;1; s1Þ þ 2ðs2 þ pÞ ¼ 28;

f ð3;3; s2Þ ¼ f ð2;1; s1Þ þ ðs2 þ pÞ ¼ 26;

f ð3;3; s3Þ ¼ f ð2;2; s2Þ þ ðs3 þ pÞ ¼ 33;

f ð4;2; s2Þ ¼ f ð1;1; s1Þ þ 3ðr4 þ pÞ ¼ 42;

f ð4;3; s2Þ ¼ f ð2;1; s1Þ þ 2ðs2 þ pÞ ¼ 38;

f ð4;4; s2Þ ¼ f ð3;1; s1Þ þ ðs2 þ pÞ ¼ 49;

f ð4;3; s3Þ ¼ f ð2;2; s2Þ þ ðs3 þ pÞ ¼ 49;

f ð4;4; s3Þ ¼min
f ð3;2; s2Þ þ ðs3 þ pÞ
f ð3;3; s2Þ þ ðs3 þ pÞ

�
¼ 43;

f ð4;4; s4Þ ¼ f ð3;3; s3Þ þ ðs4 þ pÞ ¼ 54;

Fð4Þ ¼minff ð4; j; sbÞ þ aðbÞj all possible states ðj; sbÞg ¼ 50:
The optimal schedule of this example is finally found as p� ¼ ffJ1; J3g; fJ2; J4gg with the optimal objective value of 50.
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4. Analysis of the NP-hardness

In this section, we show that for TBS is NP-hard. This is done by reducing the NP-complete Partition problem (see [20]) to
the decision version of TBS.

Partition problem: Given h items, H ¼ f1;2; . . . ;hg, each item j 2 H has a positive integer size aj, such that
Ph

j¼1aj ¼ 2a, for
some integer a. The question asks if there are two disjoint subsets G and H n G, such that

P
j2Gaj ¼

P
j2HnGaj ¼ a.

The following theorem states the computational complexity of TBS.

Theorem 1. The problem TBS is NP-hard even if m = 2.

Proof. To any instance of the Partition problem, we construct an instance of TBS as follows. There are n ¼ 2h jobs split into
two groups: the P-jobs (Partition jobs) denoted by Pj; j ¼ 1;2; . . . ;h, the X-jobs (auxiliary jobs) denoted by Xj; j ¼ 1; . . . ;h.
Their transportation times and other parameters are given by the formulas:

Transportation times: tpj
¼ aj; tXj

¼ 0; j ¼ 1; . . . ;h;
Processing time: p ¼ a;
Returning time: t ¼ 0;
Processing cost: aðbÞ ¼ 3bah;
Machine capacity: c ¼ h;
Threshold value: y ¼ 9ah.

We are going to show that for the constructed scheduling problem instance, a schedule p with
P

Cj þ aðbÞ 6 y exists if
and only if the Partition problem has a solution.

?If there is a solution to the Partition problem instance, we show that there is a schedule p with
P

Cj þ aðbÞ 6 y for the
above-constructed instance of TBS. Suppose that the Partition problem instance has a solution G1 and G2. Now we can
construct the following schedule p:

Vehicle 1 transports the jobs of G1 one by one, and vehicle 2 transports the jobs of G2 one by one. Let Tu denote the total
running time of vehicle u, for u ¼ 1;2. We can see that T1 ¼ T2 ¼ a. Since the transportation times of X-jobs are equal to 0, the
batching machine can first process these jobs. Due to c ¼ h, the X-jobs are processed as the first batch and the P-jobs are
processed as the second batch. Then the total completion time of all the jobs is 3ha. It is easy to check that

P
Cj þ aðbÞ 6 y

(see Fig. 1).
 Now we show that if there exists a schedule p with

P
Cj þ aðbÞ 6 y to the instance of TBS, then the Partition problem

has a solution. First, it is easy to see that, in an optimal schedule for the constructed instance of TBS, the following properties
hold: (i) schedule p exactly contains two batches. (ii) The first batch only contains all X-jobs and the starting time of the first
batch is 0. (iii) All P-jobs are processed as the second batch on the batching machine. Next, we prove three properties as
follows:

(i) Suppose that there are q batches in schedule p. Due to c = h, we have q P 2. Without loss of generality, we assume that
q ¼ 3. Obviously, the total processing cost is 9ah. Then the objective function of schedule p is more than y, which is a
contradiction. Thus, due to the above inequality, schedule p cannot have three or more batches. Hence, schedule p
exactly contains two batches and each batch contains h jobs. We also obtain that total processing cost of schedule
p is 6ah. This will then imply that 3ah is an upper bound of total completion time.

(ii) Since the transportation times of X-jobs are equal to 0, we can see that the earliest possible starting time on the batch-
ing machine is 0. Denote S1 and S2 as the starting time of the first batch and the second batch on the batching machine,
respectively. Note that S1 þ a 6 S2. Since the processing time of each batch on the machine is a, we have
G1 P

G2 P

PX

a a

Fig. 1. A schedule for the instance of problem TBS.
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P
Ci ¼ hðS1 þ aÞ þ hðS2 þ aÞ 6 3ah. Hence, we obtain that S1 ¼ 0 and S2 ¼ a. At time zero, there are only X-jobs avail-

able. Thus, the batching machine processes the X-jobs as the first batch at time 0. The total completion time of the first
batch is ah.

(iii) From (i) and (ii), we know that the second batch in schedule p contains P-jobs. We also can know that the P-jobs must
arrive at the batching machine before time a.

Let G1 and G2 be a Partition of P-jobs. We assume that vehicle 1 transports the jobs of G1 one by one, and vehicle 2
transports the jobs of G2 one by one. Let Tu denote the total running time of the vehicle u, for u ¼ 1;2. Based on above
discussion, it is easy to see that the starting time of the second batch is maxfT1; T2; ag where T1 ¼

P
j2G1

aj 6 a and
T2 ¼

P
j2G2

aj 6 a.
If T1 ¼

P
j2G1

aj < a, then it implies T2 ¼
P

j2G2
aj > a, which is a contradiction. Hence, we have T1 ¼ T2 ¼ a, Thus, it

must be true that
P

j2G1
aj ¼

P
j2G2

aj ¼ a. Then it is easy to see that G1 and G2 form a solution to the Partition problem
instance.

Combining the ‘‘if” part and the ‘‘only if” part, we have proved the theorem. h
5. A pseudo-polynomial dynamic programming algorithm

In this section, we provide a pseudo-polynomial-time dynamic programming algorithm to solve problem TBS. An algo-
rithm for a problem P is pseudo-polynomial if it solves any instance I of P in time bounded by a polynomial in |I| and number
(I), where |I| is the size of the instance I and number (I) is the largest integer appearing in I. For a NP-hard problem, the exis-
tence and derivation of such a pseudo-polynomial algorithm means that this problem is NP-hard in the ordinary sense. Un-
less P = NP, there can be no pseudo-polynomial algorithm for any strongly NP-hard problem. In this paper, it is of interest to
derive a pseudo-polynomial time algorithm and show that our problem is NP-hard in the ordinary sense, not strongly NP-
hard.

An extension of dynamic programming algorithm described in Section 3 can solve this problem. Based on Lemmas 1 and
3, we know that the jobs assigned to each vehicle are scheduled consecutively in nondecreasing transportation time order.
Now, we need to determine the job assignment on the vehicles and job batching on the batching machine. The starting time
of a job on the batching machine is influenced by the job assignment on the vehicle. When the job batching is determined,
the total processing cost can be determined.

Index the jobs such that t1 6 t2 6 � � � 6 tn. Assume that T is the total running time of all vehicles, that is
T ¼

Pn
i¼1ti þ ðn�mÞt. Then we can see that the total running time of any vehicle is no more than T. For each vehicle, there

are only a finite number of possible departure time points for transporting jobs. These possible departure times of each vehi-
cle from the holding area can be 0;1; . . . ; T . Based on Lemma 2, when the batching machine is idle, it will either process a new
batch immediately or wait until the arrival time of a job before processing the batch that contains that job. Thus, the starting
time of a batch on the batching machine is determined by the completion time of the previous batch on the machine and the
completion time of this batch on vehicles. To describe the dynamic programming procedure, some auxiliary functions are
introduced as follows.

Define flðk; j;Du; SlÞ as the minimum total completion time if we have scheduled jobs 1; . . . ; k subject to the following con-
straints: the current total running time of vehicle u is Du, for u ¼ 1;2; . . . ;m; the current last batch Bl contains jobs j,
jþ 1; . . . ; k; the starting time of batch Bl is Sl on the batching machine, for l ¼ 1; . . . ; b and b 2 fdn=ce; . . . ;ng. Based on the
above discussion, batch Bl will be satisfying with the following three properties:

(1) Sl � Sl�1 P p for l ¼ 2; . . . ; b.
(2) Sl P Du for l ¼ 1;2; . . . ; b.
(3) 0 < k� jþ 1 6 c.

Then the increase of the total completion time due to jobs j, jþ 1; . . . ; k is ðk� jþ 1ÞðSl þ pÞ. The algorithm is formally de-
scribed as follows.

Algorithm DP

Renumber the jobs in the non-decreasing transportation time order, i.e., t1 6 t2 6 � � � 6 tn.
Recursive relations:
flðk; j;Du; SlÞ ¼ min
0<k�jþ16c
dk=ce6l6b

ffl�1ðj� 1; i;Du � tv ; Sl�1Þ þ ðk� jþ 1ÞðSl þ pÞ; ju ¼ 1; . . . ;m; v ¼ j; . . . ; kg;
where Sl ¼
Du; l ¼ 1; u ¼ 1; . . . ;m;
maxfSl�1 þ p;Dug; l ¼ 2; . . . ; b; u ¼ 1; . . . ;m:

�



3860
Initial conditions: �

flðk; j;Du; SlÞ ¼

0; k ¼ j ¼ 0; D1 ¼ D2 ¼ � � � ¼ Dm ¼ 0; Sl ¼ 0;
1; otherwise;
for b 2 fdn=ce; . . . ;ng and Du ¼ 0;1; . . . ; T.
We emphasize that flðk; j;Du; SlÞ takes value þ1 when no feasible schedule with bl > c exists.
Optimal solution:
F� ¼minffbðn; j;Du; SbÞ þ aðbÞjb 2 dn=ce; . . . ;ng:
Theorem 2. Algorithm DP finds an optimal schedule for problem TBS in Oðcmn2T2ðm�1ÞÞ time.

Proof. Based on Lemma 3, there exists an optimal schedule with jobs assigned to each vehicle in the non-decreasing trans-
portation time order. The job index in the first step ensures this optimal property. In these recursive formulas, to guarantee
the optimality of flðk; j;Du; SlÞ, we enumerate all possibilities of the positions on the vehicles for jobs j; . . . ; k. We also have
justified the validity of the recursive relations based on the above discussions of Du and Sl. Hence, Algorithm DP can solve
problem TBS.

The time complexity of the algorithm can be established as follows. We observe that m� 1 of the value D1;D2; . . . ;Dm are
independent, the number of different states of the recursive relations is at most Tm�1. Since the calculation of each Sl have to
perform D1; . . . ;Dm, each state requires OðmTm�1Þ. By definition, k� jþ 1 6 c, k; j 6 n, and 1 6 l 6 b 6 n. Each state requires
Oðcn2Þ. Therefore, the overall time complexity of Algorithm DP is Oðcmn2T2ðm�1ÞÞ. h

Hence, from the above description and analysis, we obtain the following theorem.

Theorem 3. Problem TBS is NP-hard in the ordinary sense.
6. An FPTAS

In this section, we provide a fully polynomial approximation scheme for our problem TBS. Recall, that a polynomial time
approximation scheme (PTAS) for a problem is a ð1þ eÞ-approximation algorithm if we have F 6 ð1þ eÞF� for all instances,
where F� denotes the optimal solution value and F denotes the value of the solution given by the algorithm. Furthermore, if
the time complexity of a PTAS is polynomial in 1=e, then it is called a fully polynomial time approximation scheme (FPTAS).
In pure technical sense, an FPTAS is a best one may tackle to solve an NP-hard optimization problem, unless P = NP.

The general outline of an FPTAS for solving a problem can be stated as follows. We formulate a certain scaled problem for
the original problem. The pseudo-polynomial algorithm for the original problem is applied to this scaled problem with its
parameter. This algorithm provides a fully polynomial approximation scheme for the original problem. This scaling tech-
nique has been already successfully applied to design a fully polynomial approximation schedule for 0–1 Knapsack problem
(see [21]). There are recent applications of this scaling technique for some scheduling problems (for example, [22,23]). In this
paper, we formulate a scaled problem for TBS and prove that any efficient algorithm for the scaled problem is a 1+e-approx-
imation algorithm for the original problem TBS. Next, we will turn the pseudo-polynomial time algorithm using scaling tech-
nique into an FPTAS for TBS.

An FPTAS for problem TBS
Step 1: given an arbitrary e > 0, let d ¼ eT=nð3n� 1Þ.
Step 2: formulate a scaled problem. Define new transportation time and processing time of each job j:
t0j ¼
tj

d

� �
; t0 ¼ t

d

� �
; p0 ¼ p

d

j k
; j ¼ 1;2; . . . ;n:
Step 3: for the instance of the scaled problem, use the pseudo-polynomial time algorithm DP to obtain a minimal objective
value schedule p0 of jobs.

Step 4: take p0 as an approximate solution to the original problem instance.
For every b ¼ dn=ce; . . . ;n, suppose that we have found an schedule p0 such that its total completion time, denoted by

f 0bðp0Þ ¼ f 0bðn; j;D
0
u; S

0
bÞ, is minimized, for the scaled problem by Algorithm DP in Section 5. For every b ¼ dn=ce; . . . ;n, denote

by p� an schedule to the original problem such that its total completion time is minimized, and set f �b ðp�Þ ¼ f �b ðn; j;Du; SbÞ.
For ease of expression, we use fbðpÞ to substitute fbðn; j;Du; SbÞ.

Theorem 4. The objective value of the schedule found by Algorithm DP for the scaled problem is at most a factor of 1þ e above the
objective value of the optimal schedule found by the Algorithm DP for the original problem TBS.

Proof. Since the original problem and the scaled problem have the same set of restrictions, p0 exists if and only if p� exists.
The original problem and the scaled problem have the same total processing cost. It remains to demonstrate that
fbðp0Þ 6 ð1þ eÞf �b ðp�Þ.
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Note that the schedule has at most n transportations and n� 1 returns on each vehicle. Increase each transportation time
t0j by tj=d� t0j, which increases Cj by at most n. Increase each returning time t by t=d� t, which increases Cj by at most n� 1.
Increase each processing time p0 by p=d� p0, which increases Cj by at most n. Further, the total completion time increases at
most nð3n� 1Þ. Denote f 0

b ðpÞ ¼ fbðpÞ=d as a function obtained from fbðpÞ by substituting tj=d, t=d and p=d for tj, t and p,
respectively, j ¼ 1;2; . . . ;n. Thus, we can get a schedule with respect to tj, t and p, and its objective value is given by
fbðp0Þ ¼ f 0
b ðp0Þd 6 f 0bðp0Þdþ nð3n� 1Þd:
We have f 0bðp0Þ 6 f 0bðp�Þ due to the definition of p0. It follows that f 0bðp�Þ 6 f �b ðp�Þ=d from bxc 6 x for any number x. Com-
bining established relations in one chain, for every b ¼ dn=ce; . . . ;n, we obtain
fbðp0Þ 6 df 0bðp�Þ þ nð3n� 1Þd 6 f �b ðp�Þ þ eT 6 ð1þ eÞf �b ðp�Þ:
This implies that
min
dn=ce6b6���6n

ffbðp0Þ þ aðbÞg 6 min
dn=ce6b6���6n

fð1þ eÞf �b ðp�Þ þ aðbÞg:
Thus, we can see that the approximate solution is at most a factor of 1þ e away from the optimum solution. h

The time complexity of the approximation scheme is dominated by the step to solve the scaled problem. Let
T 0 ¼

Pn
j¼1t0j þ ðn�mÞt0. It is easy to see that T 0 holds that
T 0 6

Pn
j¼1tj þ ðn�mÞt

d
¼ T

d
¼ nð3n� 1Þ

e
:

Thus, the running time of the approximation scheme is bounded by
O cmn2ðT 0Þ2ðm�1Þ
� �

6 O cmn2 nð3n� 1Þ
e

� �2ðm�1Þ
 !

6 O cmn2 3n2

e

� �2ðm�1Þ !
;

which is polynomial for given m and 1=e.
Combining Theorem 4 and the above time complexity, we summarize our main result as the following statement.

Theorem 5. There exists an FPTAS with the running time Oðcmn2ð3n2=eÞ2ðm�1ÞÞ for problem TBS, where m is the number of
vehicles.
7. Concluding remarks

In this paper, we study a batch machine scheduling problem that incorporates transportation before processing. Our goal
is to optimize a combined objective function that considers the total completion time and the total processing cost. We prove
that this problem is NP-hard by a reduction from Partition problem and further prove that it is ordinarily NP-hard by pro-
viding a pseudo-polynomial time algorithm. The existence of an FPTAS for this problem is established. We also provide a
polynomial time algorithm to solve a special case where the job assignment to the vehicles is predetermined.

There are several possible extensions to this research. First, it is interesting to investigate the problems with other objec-
tive functions such as minimizing makespan or minimizing maximum job tardiness. Another interesting issue is to develop
effective heuristics to solve the general problem and investigate polynomial time algorithms for some special cases.

Acknowledgements

This research is partly supported by National Natural Science Foundation for Distinguished Young Scholars of China
(Grant No. 70425003), National 863 High-Tech Research and Development Program of China through approved No.
2006AA04Z174 and National Natural Science Foundation of China (Grant No. 60674084).

References

[1] C.N. Potts, M.Y. Kovalyov, Scheduling with batching: a review, Eur. J. Oper. Res. 120 (2000) 228–249.
[2] P. Brucker, A. Gladky, H. Hoogeveen, M.Y. Kovalyov, C.N. Potts, T. Tautenhahn, S.L. van de Velde, Scheduling a batching machine, J. Schedul. 1 (1) (1998)

31–54.
[3] V. Chandru, C.Y. Lee, R. Uzoy, Minimizing total completion time on batch processing machines, Int. J. Prod. Res. 31 (1993) 2097–2121.
[4] D.S. Hochbaum, D. Landy, Scheduling semiconductor burn-in operations to minimize total flowtime, Oper. Res. 45 (1997) 874–885.
[5] M. Cai, X. Deng, H. Feng, G. Li, G. Liu. A PTAS for minimizing total completion time of bounded batch scheduling. Lect. Notes Comput. Sci. 2337

(IPCO’2002), MIT2002, 304–314.
[6] X.T. Deng, H.D. Feng, P.X. Zhang, Y.Z. Zhang, H. Zhu, Minimizing mean completion time in a batch processing system, Algorithmica 38 (2004) 513–528.
[7] Z.L. Liu, T.C.E. Cheng, Approximation schemes for minimizing total (weighted) completion time with release dated on a batch machine, Theor. Comput.

Sci. 347 (2005) 288–298.
[8] J.H. Ahmadi, R.H. Ahmadi, S. Dasu, C.S. Tang, Batching and scheduling jobs on batch and discrete processors, Oper. Res. 39 (1992) 750–763.
[9] C.S. Sung, Y.H. Kim, S.H. Yoon, A problem reduction and decomposition approach for scheduling for a flowshop of a batch processing machines, Eur. J.

Oper. Res. 121 (2000) 179–192.



3862
[10] C.S. Sung, Y.H. Kim, Minimizing makespan in a two-machine flowshop with dynamic arrivals allowed, Comput. Oper. Res. 29 (2002) 275–294.
[11] C.Y. Lee, Z.L. Chen, Machine scheduling with transportation considerations, J. Schedul. 4 (2001) 3–24.
[12] C.Y. Lee, V.A. Strusevich, Two-machine shop scheduling with an uncapacited interstage transporter, IIE Trans. 37 (2005) 725–736.
[13] Y.C. Chang, C.Y. Lee, Machine scheduling with job delivery coordination, Eur. J. Oper. Res. 158 (2004) 470–487.
[14] C.L. Li, J. Ou, Machine scheduling with pickup and delivery, Naval Res. Logis. 52 (2005) 617–630.
[15] G. Pundoor, Z.L. Chen, Scheduling a production–distribution system to optimize the tradeoff between delivery tardiness and distribution cost, Naval

Res. Logis. 52 (2005) 571–589.
[16] Z.L. Chen, G.L. Vairaktarakis, Integrated scheduling of production and distribution operations, Manage. Sci. 51 (2005) 614–628.
[17] N.G. Hall, C.N. Potts, Supply chain scheduling: batching and delivery, Oper. Res. 51 (2003) 566–584.
[18] N.G. Hall, C.N. Potts, The coordination of scheduling and batch deliveries, Ann. Oper. Res. 135 (2005) 41–64.
[19] G. Wang, T.C.E. Cheng, Parallel machine scheduling with batch delivery costs, Int. J. Prod. Econom. 68 (2005) 177–183.
[20] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W.H. Freeman, San Francisco, 1979.
[21] C.H. Papadimitriou, K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity, Dover Publications, New York, 1998.
[22] J.J. Yuan, Z.H. Liu, C.T. Ng, T.C.E. Cheng, The unbounded single machine parallel batch scheduling problem with family jobs and release dates to

minimize makespan, Theor. Comput. Sci. 320 (2004) 199–212.
[23] Z.H. Liu, T.C.E. Cheng, Scheduling with job release dates, delivery times and preemption penalties, Inf. Process. Lett. 82 (2002) 107–111.


	The coordination of transportation and batching scheduling
	Introduction
	Statement of problem
	A polynomial time algorithm for a special case
	Analysis of the NP-hardness
	A pseudo-polynomial dynamic programming algorithm
	Algorithm DP

	An FPTAS
	Concluding remarks
	Acknowledgements
	References


